Busiest month

monthly_shares <-
  flights %>%
  group_by(carrier, month) %>%
  summarize(distance = sum(distance)) %>%
  mutate(total_distance = sum(distance)) %>%
  ungroup() %>%
  mutate(month_share = distance / total_distance) %>%
  arrange(-total_distance)

monthly_shares
## # A tibble: 185 x 5
##    carrier month distance total_distance month_share
##    <chr>   <int>    <dbl>          <dbl>       <dbl>
##  1 UA          1  6777189       89705524      0.0755
##  2 UA          2  6239683       89705524      0.0696
##  3 UA          3  7235740       89705524      0.0807
##  4 UA          4  7580735       89705524      0.0845
##  5 UA          5  7714391       89705524      0.0860
##  6 UA          6  7833622       89705524      0.0873
##  7 UA          7  8008887       89705524      0.0893
##  8 UA          8  8162260       89705524      0.0910
##  9 UA          9  7360730       89705524      0.0821
## 10 UA         10  7734657       89705524      0.0862
## # ... with 175 more rows
monthly_shares %>% 
  ggplot(aes(factor(month), carrier, fill = month_share)) +
  geom_tile() +
  scale_fill_continuous(trans = "log10")

Copyright © 2018 Kirill Müller. Licensed under CC BY-NC 4.0.