R/margins.R
compute_margins.Rd
These functions allows checking a fit in terms of the original input data.
compute_margins(fitting_problem, weights, verbose = FALSE) margin_to_df(controls, count = NULL, verbose = FALSE)
fitting_problem | A fitting problem created by
|
---|---|
weights | A vector with one entry per row of the original reference sample |
verbose | If |
controls | Margins as returned by |
count | Name of control total column, autodetected by default. |
compute_margins()
computes margins in the format used for the input
controls (i.e., as expected by the controls
parameter of the
fitting_problem()
function),
based on a reference sample and a weights vector.
margins_to_df()
converts margins to a data frame for easier comparison.
path <- toy_example("Tiny") problem <- readRDS(path) fit <- ml_fit(algorithm = "entropy_o", fitting_problem = problem) margins <- compute_margins(problem, fit$weights) margins#> $individual #> $individual$IND #> WKSTAT N #> 1 1 91 #> 2 2 65 #> 3 3 104 #> #> #> $group #> $group$GROUP #> CAR N #> 1 0 35 #> 2 1 65 #> #>margin_to_df(problem$controls)#> ..control.type.. ..control.name.. ..id.. ..count.. #> 1 individual IND 1 91 #> 2 individual IND 2 65 #> 3 individual IND 3 104 #> 4 group GROUP 0 35 #> 5 group GROUP 1 65margin_to_df(margins)#> ..control.type.. ..control.name.. ..id.. ..count.. #> 1 individual IND 1 91 #> 2 individual IND 2 65 #> 3 individual IND 3 104 #> 4 group GROUP 0 35 #> 5 group GROUP 1 65