R/flatten_ml_fit_problem.R
flatten_ml_fit_problem.Rd
This function transforms a multi-level fitting problem to a representation more suitable for applying the algorithms: A matrix with one row per controlled attribute and one column per household, a weight vector with one weight per household, and a control vector.
flatten_ml_fit_problem( fitting_problem, model_matrix_type = c("combined", "separate"), verbose = FALSE ) as.flat_ml_fit_problem(x, model_matrix_type = c("combined", "separate"), ...)
fitting_problem | A fitting problem created by
|
---|---|
model_matrix_type | Which model matrix building strategy to use? See details. |
verbose | If |
x | An object |
... | Further parameters passed to the algorithm |
An object of classes flat_ml_fit_problem
,
essentially a named list.
The standard way to build a model matrix (model_matrix = "combined"
)
is to include intercepts and avoid repeating redundant attributes.
A simpler model matrix specification, available via model_matrix = "separate"
,
is suggested by Ye et al. (2009) and required for the ml_fit_ipu()
implementation:
Here, simply one column per target value is used, which
results in a larger model matrix if more than one control is given.
path <- toy_example("Tiny") flat_problem <- flatten_ml_fit_problem(fitting_problem = readRDS(path)) flat_problem#> An object of class flat_ml_fit_problem #> Dimensions: 5 groups, 8 target values #> Model matrix type: combined #> Original fitting problem: #> An object of class fitting_problem #> Reference sample: 23 observations #> Control totals: 1 at individual, and 1 at group level #> Results for algorithms: entropy_o(1,0), entropy_o(0,1), entropy_o(1,1), entropy, ml_ipf, ipu#> [1] 8.937470 23.448579 2.613950 25.899223 14.347802 11.009562 2.733852 #> [8] 11.009562 #> attr(,"success") #> [1] TRUE #> attr(,"iterations") #> [1] 6 #> attr(,"method") #> [1] "raking"fit$weights#> [1] 8.937470 8.937470 8.937470 23.448579 23.448579 2.613950 2.613950 #> [8] 2.613950 25.899223 25.899223 25.899223 14.347802 14.347802 14.347802 #> [15] 11.009562 11.009562 2.733852 2.733852 2.733852 2.733852 2.733852 #> [22] 11.009562 11.009562