Which columns in the airlines
and airports
tables uniquely identify the observations, i.e., are keys in these tables? Verify. How are these tables connected to the flights
table?
```r airlines %>% count(___) %>% filter(n > 1)
airports %>% _____ %>% _____
airlines %>% inner_join(___)
airlines %>% inner_join(___, by = c(“" = "”)) ``
► Solution:
airlines %>%
count(carrier) %>%
filter(n > 1)
## # A tibble: 0 x 2
## # … with 2 variables: carrier <chr>, n <int>
airports %>%
count(faa) %>%
filter(n > 1)
## # A tibble: 0 x 2
## # … with 2 variables: faa <chr>, n <int>
airlines %>%
inner_join(flights)
## Joining, by = "carrier"
## # A tibble: 336,776 x 20
## carrier name year month day dep_time sched_dep_time dep_delay
## <chr> <chr> <int> <int> <int> <int> <int> <dbl>
## 1 9E Ende… 2013 1 1 810 810 0
## 2 9E Ende… 2013 1 1 1451 1500 -9
## 3 9E Ende… 2013 1 1 1452 1455 -3
## 4 9E Ende… 2013 1 1 1454 1500 -6
## 5 9E Ende… 2013 1 1 1507 1515 -8
## 6 9E Ende… 2013 1 1 1530 1530 0
## 7 9E Ende… 2013 1 1 1546 1540 6
## 8 9E Ende… 2013 1 1 1550 1550 0
## 9 9E Ende… 2013 1 1 1552 1600 -8
## 10 9E Ende… 2013 1 1 1554 1600 -6
## # … with 336,766 more rows, and 12 more variables: arr_time <int>,
## # sched_arr_time <int>, arr_delay <dbl>, flight <int>, tailnum <chr>,
## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>
airports %>%
inner_join(flights, by = c("faa" = "dest"))
## # A tibble: 329,174 x 26
## faa name lat lon alt tz dst tzone year month day
## <chr> <chr> <dbl> <dbl> <int> <dbl> <chr> <chr> <int> <int> <int>
## 1 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 1
## 2 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 2
## 3 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 3
## 4 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 4
## 5 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 5
## 6 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 6
## 7 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 7
## 8 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 8
## 9 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 9
## 10 ABQ Albu… 35.0 -107. 5355 -7 A Amer… 2013 10 10
## # … with 329,164 more rows, and 15 more variables: dep_time <int>,
## # sched_dep_time <int>, dep_delay <dbl>, arr_time <int>,
## # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
Compute a list of all flights shorter than 300 miles. Use explicit names for the carriers and the destinations. How do you turn off the joining messages? Describe the column names in the result.
Hint: Use by = c("dest" = "faa")
.
flights %>%
filter(distance < 300) %>%
count(dest, carrier) %>%
left_join(airlines, _____) %>%
left_join(airports, by = c("___" = "___"))
► Solution:
flights %>%
filter(distance < 300) %>%
left_join(airlines, by = "carrier") %>%
left_join(airports, by = c("dest" = "faa"))
## # A tibble: 51,287 x 27
## year month day dep_time sched_dep_time dep_delay arr_time
## <int> <int> <int> <int> <int> <dbl> <int>
## 1 2013 1 1 557 600 -3 709
## 2 2013 1 1 559 559 0 702
## 3 2013 1 1 629 630 -1 721
## 4 2013 1 1 632 608 24 740
## 5 2013 1 1 639 640 -1 739
## 6 2013 1 1 732 735 -3 857
## 7 2013 1 1 733 736 -3 854
## 8 2013 1 1 801 805 -4 900
## 9 2013 1 1 803 810 -7 903
## 10 2013 1 1 820 830 -10 940
## # … with 51,277 more rows, and 20 more variables: sched_arr_time <int>,
## # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>, name.x <chr>, name.y <chr>, lat <dbl>,
## # lon <dbl>, alt <int>, tz <dbl>, dst <chr>, tzone <chr>
Count the number of observations per airline per destination, and convert to wide form using nice labels for better use of screen space. Do you use spread()
or gather()
? How do you replace the NA
values with zeros?
# The name of the `name` variable isn't very useful,
# need to rename it
flights %>%
filter(distance < 300) %>%
left_join(_____) %>%
rename(carrier_name = ___) %>%
left_join(_____) %>%
rename(_____) %>%
count(_____) %>%
_____(_____)
► Solution:
flights %>%
filter(distance < 300) %>%
left_join(airlines, by = "carrier") %>%
rename(carrier_name = name) %>%
left_join(airports, by = c("dest" = "faa")) %>%
rename(airport_name = name) %>%
count(carrier_name, airport_name) %>%
spread(carrier_name, n)
## # A tibble: 19 x 12
## airport_name `American Airli… `Delta Air Line… `Endeavor Air I…
## <chr> <int> <int> <int>
## 1 Albany Intl NA NA NA
## 2 Baltimore W… NA NA 856
## 3 Bradley Intl NA NA NA
## 4 Buffalo Nia… NA 3 54
## 5 Burlington … NA NA 2
## 6 General Edw… 1455 972 914
## 7 Greater Roc… NA NA 281
## 8 La Guardia NA NA NA
## 9 Manchester … NA NA 11
## 10 "Martha\\\\… NA NA 71
## 11 Nantucket M… NA NA NA
## 12 Norfolk Intl NA NA 402
## 13 Philadelphi… NA 2 940
## 14 Portland In… NA 235 NA
## 15 Richmond In… NA NA 340
## 16 Ronald Reag… NA 2 1074
## 17 Syracuse Ha… NA NA 170
## 18 Theodore Fr… NA NA NA
## 19 Washington … NA NA 664
## # … with 8 more variables: `Envoy Air` <int>, `ExpressJet Airlines
## # Inc.` <int>, `JetBlue Airways` <int>, `Mesa Airlines Inc.` <int>,
## # `SkyWest Airlines Inc.` <int>, `Southwest Airlines Co.` <int>, `United
## # Air Lines Inc.` <int>, `US Airways Inc.` <int>
Change the code from the last example to use count()
right after filter()
. What additional steps do you need?
airline_names <-
airlines %>%
_____()
dest_airport_names <-
_____ %>%
_____()
flights %>%
filter(distance < 300) %>%
count(_____) %>%
left_join(_____, by = "___") %>%
select(-___) %>%
left_join(_____, by = "___") %>%
_____(_____)
► Solution:
airline_names <-
airlines %>%
rename(carrier_name = name)
dest_airport_names <-
airports %>%
select(dest = faa, airport_name = name)
verbose_destinations_by_carrier <-
flights %>%
filter(distance < 300) %>%
count(carrier, dest) %>%
left_join(airline_names, by = "carrier") %>%
select(-carrier) %>%
left_join(dest_airport_names, by = "dest") %>%
select(-dest)
verbose_destinations_by_carrier
## # A tibble: 58 x 3
## n carrier_name airport_name
## <int> <chr> <chr>
## 1 914 Endeavor Air Inc. General Edward Lawrence Logan Intl
## 2 2 Endeavor Air Inc. Burlington Intl
## 3 54 Endeavor Air Inc. Buffalo Niagara Intl
## 4 856 Endeavor Air Inc. Baltimore Washington Intl
## 5 1074 Endeavor Air Inc. Ronald Reagan Washington Natl
## 6 664 Endeavor Air Inc. Washington Dulles Intl
## 7 11 Endeavor Air Inc. Manchester Regional Airport
## 8 71 Endeavor Air Inc. "Martha\\\\'s Vineyard"
## 9 402 Endeavor Air Inc. Norfolk Intl
## 10 940 Endeavor Air Inc. Philadelphia Intl
## # … with 48 more rows
Plot a heat map of destination by airline for all flights shorter than 300 miles, with explicit names. Do you use geom_raster()
or geom_bin2d()
?
Hint: Use by = c("dest" = "faa")
.
verbose_destinations_by_carrier <-
_____
verbose_destinations_by_carrier %>%
ggplot() +
geom____(aes(___))
► Solution:
verbose_destinations_by_carrier %>%
ggplot() +
geom_raster(aes(airport_name, carrier_name, fill = n)) +
ggpubr::rotate_x_text()
# theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))
Find more exercises in Section 13.4.6 of r4ds.
Copyright © 2019 Kirill Müller. Licensed under CC BY-NC 4.0.