Convert table3
to table1
and table2
.
table3 %>%
separate(
___,
into = c("___", "___"),
convert = TRUE
) %>%
_____ %>%
_____
► Solution:
table3 %>%
separate(rate, into = c("cases", "population"), sep = "/", convert = TRUE)
## # A tibble: 6 x 4
## country year cases population
## * <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
table3 %>%
separate(
rate,
into = c("cases", "population"),
sep = "/",
convert = TRUE
) %>%
gather(type, count, -country, -year) %>%
arrange(country, year, type)
## # A tibble: 12 x 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
Convert table2
to table3
.
table2 %>%
_____ %>%
unite(
___,
___, ___,
sep = "/"
)
► Solution:
table2 %>%
spread(type, count) %>%
unite(rate, cases, population, sep = "/")
## # A tibble: 6 x 3
## country year rate
## <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
Count the flights for each relation in the flights
dataset, using just one grouping variable.
flights %>%
unite(
relation,
___, ___,
sep = " -> "
) %>%
count(___)
► Solution:
flights %>%
unite(
relation,
origin, dest,
sep = " -> "
) %>%
count(relation)
## # A tibble: 224 x 2
## relation n
## <chr> <int>
## 1 EWR -> ALB 439
## 2 EWR -> ANC 8
## 3 EWR -> ATL 5022
## 4 EWR -> AUS 968
## 5 EWR -> AVL 265
## 6 EWR -> BDL 443
## 7 EWR -> BNA 2336
## 8 EWR -> BOS 5327
## 9 EWR -> BQN 297
## 10 EWR -> BTV 931
## # ... with 214 more rows
Find more exercises in Section 12.4.3 of r4ds.
Copyright © 2018 Kirill Müller. Licensed under CC BY-NC 4.0.