Zooming to a table of a dm allows for the use of many dplyr-verbs directly on this table, while retaining the context of the dm object.

dm_zoom_to() zooms to the given table.

dm_update_zoomed() overwrites the originally zoomed table with the manipulated table. The filter conditions for the zoomed table are added to the original filter conditions.

dm_insert_zoomed() adds a new table to the dm.

dm_discard_zoomed() discards the zoomed table and returns the dm as it was before zooming.

Please refer to vignette("tech-db-zoom", package = "dm") for a more detailed introduction.

dm_zoom_to(dm, table)

dm_insert_zoomed(dm, new_tbl_name = NULL, repair = "unique", quiet = FALSE)

dm_update_zoomed(dm)

dm_discard_zoomed(dm)

Arguments

dm

A dm object.

table

A table in the dm.

new_tbl_name

Name of the new table.

repair

Either a string or a function. If a string, it must be one of "check_unique", "minimal", "unique", or "universal". If a function, it is invoked with a vector of minimal names and must return minimal names, otherwise an error is thrown.

  • Minimal names are never NULL or NA. When an element doesn't have a name, its minimal name is an empty string.

  • Unique names are unique. A suffix is appended to duplicate names to make them unique.

  • Universal names are unique and syntactic, meaning that you can safely use the names as variables without causing a syntax error.

The "check_unique" option doesn't perform any name repair. Instead, an error is raised if the names don't suit the "unique" criteria.

quiet

By default, the user is informed of any renaming caused by repairing the names. This only concerns unique and universal repairing. Set quiet to TRUE to silence the messages.

Value

For dm_zoom_to(): A zoomed_dm object.

For dm_insert_zoomed(), dm_update_zoomed() and dm_discard_zoomed(): A dm object.

Details

Whenever possible, the key relations of the original table are transferred to the resulting table when using dm_insert_zoomed() or dm_update_zoomed().

Functions from dplyr that are supported for a zoomed_dm: group_by(), summarise(), mutate(), transmute(), filter(), select(), rename() and ungroup(). You can use these functions just like you would with a normal table.

In addition to filtering the zoomed table, the filter condition from filter() is also stored in the dm. Depending on which function you use to return to a normal dm, one of the following happens:

  1. dm_discard_zoomed(): all filter conditions for the zoomed table are discarded

  2. dm_update_zoomed(): the filter conditions of the original table and those of the zoomed table are combined

  3. dm_insert_zoomed(): the filter conditions of the original table stay there and those of the zoomed table are transferred to the new table of the dm

Furthermore, the different join()-variants from dplyr are also supported (apart from nest_join()). The join-methods for zoomed_dm have an extra argument select that allows choosing the columns of the RHS table.

And -- last but not least -- also the tidyr-functions unite() and separate() are supported for zoomed_dm.

Examples

flights_zoomed <- dm_zoom_to(dm_nycflights13(), flights) flights_zoomed
#> # Zoomed table: flights #> # A tibble: 11,227 x 19 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time #> <int> <int> <int> <int> <int> <dbl> <int> <int> #> 1 2013 1 10 3 2359 4 426 437 #> 2 2013 1 10 16 2359 17 447 444 #> 3 2013 1 10 450 500 -10 634 648 #> 4 2013 1 10 520 525 -5 813 820 #> 5 2013 1 10 530 530 0 824 829 #> 6 2013 1 10 531 540 -9 832 850 #> 7 2013 1 10 535 540 -5 1015 1017 #> 8 2013 1 10 546 600 -14 645 709 #> 9 2013 1 10 549 600 -11 652 724 #> 10 2013 1 10 550 600 -10 649 703 #> # … with 11,217 more rows, and 11 more variables: arr_delay <dbl>, #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, #> # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
flights_zoomed_transformed <- flights_zoomed %>% mutate(am_pm_dep = ifelse(dep_time < 1200, "am", "pm")) %>% # `by`-argument of `left_join()` can be explicitly given # otherwise the key-relation is used left_join(airports) %>% select(year:dep_time, am_pm_dep, everything()) flights_zoomed_transformed
#> # Zoomed table: flights #> # A tibble: 11,227 x 27 #> year month day dep_time am_pm_dep sched_dep_time dep_delay arr_time #> <int> <int> <int> <int> <chr> <int> <dbl> <int> #> 1 2013 1 10 3 am 2359 4 426 #> 2 2013 1 10 16 am 2359 17 447 #> 3 2013 1 10 450 am 500 -10 634 #> 4 2013 1 10 520 am 525 -5 813 #> 5 2013 1 10 530 am 530 0 824 #> 6 2013 1 10 531 am 540 -9 832 #> 7 2013 1 10 535 am 540 -5 1015 #> 8 2013 1 10 546 am 600 -14 645 #> 9 2013 1 10 549 am 600 -11 652 #> 10 2013 1 10 550 am 600 -10 649 #> # … with 11,217 more rows, and 19 more variables: sched_arr_time <int>, #> # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, #> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, #> # time_hour <dttm>, name <chr>, lat <dbl>, lon <dbl>, alt <dbl>, tz <dbl>, #> # dst <chr>, tzone <chr>
# replace table `flights` with the zoomed table flights_zoomed_transformed %>% dm_update_zoomed()
#> ── Metadata ──────────────────────────────────────────────────────────────────── #> Tables: `airlines`, `airports`, `flights`, `planes`, `weather` #> Columns: 61 #> Primary keys: 3 #> Foreign keys: 3
# insert the zoomed table as a new table flights_zoomed_transformed %>% dm_insert_zoomed("extended_flights") %>% dm_draw()
%0 airlines airlines carrier airports airports faa extended_flights extended_flights carrier tailnum origin extended_flights:carrier->airlines:carrier extended_flights:origin->airports:faa planes planes tailnum extended_flights:tailnum->planes:tailnum flights flights carrier tailnum origin flights:carrier->airlines:carrier flights:origin->airports:faa flights:tailnum->planes:tailnum weather weather
# discard the zoomed table flights_zoomed_transformed %>% dm_discard_zoomed()
#> ── Metadata ──────────────────────────────────────────────────────────────────── #> Tables: `airlines`, `airports`, `flights`, `planes`, `weather` #> Columns: 53 #> Primary keys: 3 #> Foreign keys: 3